Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Pharmacol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520128

RESUMO

Firsocostat is an oral, liver-targeted inhibitor of acetyl-coenzyme A carboxylase in development for the treatment of metabolic dysfunction-associated steatohepatitis. Hepatic organic anion transporting polypeptides play a significant role in the disposition of firsocostat with minimal contributions from uridine diphospho-glucuronosyltransferase and cytochrome P450 3A enzymes. This phase 1 study evaluated the pharmacokinetics and safety of firsocostat in participants with mild, moderate, or severe hepatic impairment. Participants with stable mild, moderate, or severe hepatic impairment (Child-Pugh A, B, or C, respectively [n = 10 per cohort]) and healthy matched controls with normal hepatic function (n = 10 per cohort) received a single oral dose of firsocostat (20 mg for mild and moderate hepatic impairment; 5 mg for severe hepatic impairment) with intensive pharmacokinetic sampling over 96 h. Safety was monitored throughout the study. Firsocostat plasma exposure (AUCinf) was 83%, 8.7-fold, and 30-fold higher in participants with mild, moderate, and severe hepatic impairment, respectively, relative to matched controls. Firsocostat was generally well tolerated, and all reported adverse events were mild in nature. Dose adjustment is not necessary for the administration of firsocostat in patients with mild hepatic impairment. However, based on the observed increases in firsocostat exposure, dose adjustment should be considered for patients with moderate or severe hepatic impairment, and additional safety and efficacy data from future clinical trials will further inform dose adjustment.

2.
Antimicrob Agents Chemother ; 68(4): e0134423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38456707

RESUMO

Lenacapavir is a novel, first-in-class, multistage inhibitor of HIV-1 capsid function approved for the treatment of multidrug-resistant HIV-1 infection in combination with other antiretrovirals for heavily treatment-experienced people with HIV. Two Phase 1, open-label, parallel-group, single-dose studies assessed the pharmacokinetics (PK) of lenacapavir in participants with moderate hepatic impairment [Child-Pugh-Turcotte (CPT) Class B: score 7-9] or severe renal impairment [15 ≤ creatinine clearance (CLcr) ≤29 mL/min] to inform lenacapavir dosing in HIV-1-infected individuals with organ impairment. In both studies, a single oral dose of 300 mg lenacapavir was administered to participants with normal (n = 10) or impaired (n = 10) hepatic/renal function who were matched for age (±10 years), sex, and body mass index (±20%). Lenacapavir exposures [area under the plasma concentration-time curve from time 0 to infinity (AUCinf) and maximum concentration (Cmax)] were approximately 1.47- and 2.61-fold higher, respectively, in participants with moderate hepatic impairment compared to those with normal hepatic function, whereas lenacapavir AUCinf and Cmax were approximately 1.84- and 2.62-fold higher, respectively, in participants with severe renal impairment compared to those with normal renal function. Increased lenacapavir exposures with moderate hepatic or severe renal impairment were not considered clinically meaningful. Lenacapavir was considered generally safe and well tolerated in both studies. These results support the use of approved lenacapavir dosing regimen in patients with mild (CPT Class A: score 5-6) or moderate hepatic impairment as well as in patients with mild (60 ≤ CLcr ≤ 89 mL/min), moderate (30 ≤ CLcr ≤ 59 mL/min), and severe renal impairment.


Assuntos
Hepatopatias , Insuficiência Renal , Humanos , Área Sob a Curva , Insuficiência Renal/metabolismo , Rim/metabolismo , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38346861

RESUMO

Cilofexor is a nonsteroidal farnesoid X receptor agonist being developed in combination with firsocostat/semaglutide for the treatment of nonalcoholic steatohepatitis. This phase 1 study evaluated the effects of food and acid-reducing agents (ARAs) on the pharmacokinetics of cilofexor (100- or 30-mg fixed-dose combination with firsocostat) in healthy participants. Cohorts 1 (n = 20, 100 mg) and 2 (n = 30, 30 mg) followed a 3-period, 2-sequence crossover design and evaluated effects of light-fat and high-fat meals. Cohort 3 (n = 30, 100 mg fasting) followed a 2-period, 2-sequence crossover design and evaluated the effects of a 40-mg single dose of famotidine. Cohort 4 (n = 18, 100 mg) followed a 3-period, 2-sequence crossover design and evaluated the effects of a 40-mg once-daily regimen of omeprazole administered under fasting conditions or following a light-fat meal. Administration with light-fat or high-fat meals resulted in no change and an ∼35% reduction in cilofexor AUC, respectively, relative to the fasting conditions. Under fasting conditions, famotidine increased cilofexor AUC by 3.2-fold and Cmax by 6.1-fold, while omeprazole increased cilofexor AUC by 3.1-fold and Cmax by 4.8-fold. With a low-fat meal, omeprazole increased cilofexor exposure to a lesser extent (Cmax 2.5-fold, AUC 2.1-fold) than fasting conditions. This study suggests that caution should be exercised when cilofexor is administered with ARAs under fed conditions; coadministration of cilofexor (100 or 30 mg) with ARAs under fasting conditions is not recommended with the current clinical trial formulations.

4.
Clin Pharmacokinet ; 63(2): 241-253, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236562

RESUMO

BACKGROUND AND OBJECTIVE: Lenacapavir (LEN) is a novel, first-in-class, multistage, selective inhibitor of human immunodeficiency virus type 1 (HIV-1) capsid function recently approved for the treatment of HIV-1 infection in heavily treatment-experienced adults with multidrug-resistant HIV-1 infection. The purpose of this multicohort study was to evaluate the pharmacokinetics, metabolism, excretion, safety, and tolerability of LEN following a single intravenous (IV) infusion of 10 mg LEN or 20 mg [14C]LEN in healthy participants. METHODS: Twenty-one healthy adult participants were enrolled into the study and received either a single IV dose of 10 mg LEN (n = 8 active, n = 3 placebo; cohort 1) or a single IV dose of 20 mg [14C]LEN containing 200 µCi (n = 10; cohort 2). Blood, urine, and feces samples (when applicable) were collected after dosing, and radioactivity (cohort 2) was assessed using liquid scintillation counting in both plasma and excreta. LEN in plasma was quantified by liquid chromatography (LC) tandem mass spectroscopy (MS/MS) method bioanalysis. Metabolite profiling in plasma and excreta were performed using LC-fraction collect (FC)-high-resolution MS and LC-FC-accelerator mass spectrometry in plasma. RESULTS: Between the 10 mg and 20 mg doses of LEN, the observed plasma exposure of LEN doubled, while the elimination half-life was similar. Following administration of 20 mg [14C]LEN (200 µCi), the mean cumulative recovery of [14C] radioactivity was 75.9% and 0.24% from feces and urine, respectively. The mean whole [14C] blood-to-plasma concentration ratio was 0.5-0.7, which showed a low distribution of LEN to red blood cells. Intact LEN was the predominant circulating species in plasma (representing 68.8% of circulating radioactivity), and no single metabolite contributed to > 10% of total radioactivity exposure through 1176 h postdose. Similarly, intact LEN was the most abundant component (32.9% of administered dose; 75.9% of recovered dose) measured in feces, with metabolites accounting for trace amounts. These results suggest metabolism of LEN is not a primary pathway of elimination. Of the metabolites observed in the feces, the three most abundant metabolites were direct phase 2 conjugates (glucuronide, hexose, and pentose conjugates), with additional metabolites formed to a lesser extent via other pathways. The administered LEN IV doses were generally safe and well-tolerated across participants in this study. CONCLUSIONS: The results of this mass balance study indicated that LEN was majorly eliminated as intact LEN via the feces. The renal pathway played a minor role in LEN elimination (0.24%). In addition, no major circulating metabolites in plasma or feces were found, indicating minimal metabolism of LEN.


Assuntos
Fármacos Anti-HIV , HIV-1 , Adulto , Humanos , Infusões Intravenosas , Capsídeo , Voluntários Saudáveis , Espectrometria de Massas em Tandem , Biotransformação , Fezes/química , Administração Oral
5.
Clin Pharmacokinet ; 62(4): 609-621, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906733

RESUMO

BACKGROUND AND OBJECTIVE: Cilofexor is a selective farnesoid X receptor (FXR) agonist in development for the treatment of nonalcoholic steatohepatitis and primary sclerosing cholangitis. Our objective was to evaluate potential drug-drug interactions of cilofexor as a victim and as a perpetrator. METHODS: In this Phase 1 study, healthy adult participants (n = 18-24 per each of the 6 cohorts) were administered cilofexor in combination with either perpetrators or substrates of cytochrome P-450 (CYP) enzymes and drug transporters. RESULTS: In total, 131 participants completed the study. As a victim, cilofexor area under the curve (AUC) was 651%, 795%, and 175% when administered following single-dose cyclosporine (600 mg; organic anion transporting polypeptide [OATP]/P-glycoprotein [P-gp]/CYP3A inhibitor), single-dose rifampin (600 mg; OATP1B1/1B3 inhibitor), and multiple-dose gemfibrozil (600 mg twice daily [BID]; CYP2C8 inhibitor), respectively, compared with the administration of cilofexor alone. Cilofexor AUC was 33% when administered following multiple-dose rifampin (600 mg; OATP/CYP/P-gp inducer). Multiple-dose voriconazole (200 mg BID; CYP3A4 inhibitor) and grapefruit juice (16 ounces; intestinal OATP inhibitor) did not affect cilofexor exposure. As a perpetrator, multiple-dose cilofexor did not affect the exposure of midazolam (2 mg; CYP3A substrate), pravastatin (40 mg; OATP substrate), or dabigatran etexilate (75 mg; intestinal P-gp substrate), but atorvastatin (10 mg; OATP/CYP3A4 substrate) AUC was 139% compared with atorvastatin administered alone. CONCLUSION: Cilofexor may be coadministered with inhibitors of P-gp, CYP3A4, or CYP2C8 without the need for dose modification. Cilofexor may be coadministered with OATP, BCRP, P-gp, and/or CYP3A4 substrates-including statins-without dose modification. However, coadministration of cilofexor with strong hepatic OATP inhibitors, or with strong or moderate inducers of OATP/CYP2C8, is not recommended.


Assuntos
Transportadores de Ânions Orgânicos , Rifampina , Adulto , Humanos , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A/metabolismo , Atorvastatina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Preparações Farmacêuticas , Interações Medicamentosas , Sistema Enzimático do Citocromo P-450 , Proteínas de Membrana Transportadoras , Inibidores do Citocromo P-450 CYP3A/farmacologia
6.
J Clin Pharmacol ; 63(5): 560-568, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36700458

RESUMO

Firsocostat, a liver-targeted acetyl-coenzyme A carboxylase inhibitor, and cilofexor, a nonsteroidal farnesoid X receptor agonist, are being developed in combination for treatment of nonalcoholic steatohepatitis. This phase 1 study evaluated firsocostat and cilofexor pharmacokinetics and tolerability in participants with severe renal impairment (SRI) and healthy matched controls (HMCs). Ten participants with SRI (estimated glomerular filtration rate by Modification of Diet in Renal Disease <30 mL/min/1.73 m2 ), and 10 HMCs received single oral doses of firsocostat (20 mg) on day 1 and cilofexor (100 mg) on day 7 in a fasted state. Plasma concentrations of firsocostat (and nonactive metabolite GS-834773) and cilofexor (and nonactive metabolites GS-716070 and GS-1056756) were collected over 96 hours and quantified; plasma exposures (area under the concentration-time curve [AUC] and peak concentration [Cmax ]) and plasma protein binding were characterized. Firsocostat AUC was ≈40% higher in SRI versus HMC, while Cmax was 8% lower. Observed exposures of the firsocostat metabolite were ≈4.6-fold higher in SRI participants versus HMC. Exposures (AUC and Cmax ) of cilofexor and metabolites and percentages of protein binding of all analytes were similar between SRI and HMC groups. Treatment-emergent adverse events were generally mild and not considered related to study drug. A <50% increase in firsocostat exposure was observed among SRI participants but was deemed not clinically relevant. There was no apparent effect of SRI on cilofexor exposure. Based on this trial, firsocostat and cilofexor dosing are not expected to require modification in patients who are renally impaired.


Assuntos
Acetil-CoA Carboxilase , Insuficiência Renal , Humanos , Acetil-CoA Carboxilase/metabolismo , Área Sob a Curva , Coenzima A/metabolismo , Insuficiência Renal/metabolismo
7.
Hastings Cent Rep ; 51(2): 16-21, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33840101

RESUMO

Harrowing stories reported in the media describe Covid-19 ravaging through families. This essay reports professional experiences of this phenomenon, family clustering, as encountered during the pandemic's spread across Southern California. We identify three ethical challenges following from it: Family clustering impedes shared decision-making by reducing available surrogate decision-makers for incapacitated patients, increases the emotional burdens of surrogate decision-makers, and exacerbates health disparities for and the suffering of people of color at increased likelihood of experiencing family clustering. We propose that, in response to these challenges, efforts in advance care planning be expanded, emotional support offered to surrogates and family members be increased, more robust state guidance be issued on ethical decision-making for unrepresented patients, ethics consultation be increased in the setting of conflict following from family clustering dynamics, and health care professionals pay more attention to systemic and personal racial biases and inequities that affect patient care and the surrogate experience.


Assuntos
Planejamento Antecipado de Cuidados , COVID-19/epidemiologia , Saúde da Família , Família/psicologia , Saúde das Minorias , Assistência ao Paciente , Planejamento Antecipado de Cuidados/ética , Planejamento Antecipado de Cuidados/legislação & jurisprudência , California/epidemiologia , Análise por Conglomerados , Tomada de Decisão Compartilhada , Saúde da Família/ética , Saúde da Família/etnologia , Disparidades nos Níveis de Saúde , Humanos , Saúde das Minorias/ética , Saúde das Minorias/etnologia , Assistência ao Paciente/ética , Assistência ao Paciente/psicologia , SARS-CoV-2 , Apoio Social , Consentimento do Representante Legal/ética
8.
JCI Insight ; 3(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30568031

RESUMO

Drug-induced kidney injury, largely caused by proximal tubular intoxicants, limits development and clinical use of new and approved drugs. Assessing preclinical nephrotoxicity relies on animal models that are frequently insensitive; thus, potentially novel techniques - including human microphysiological systems, or "organs on chips" - are proposed to accelerate drug development and predict safety. Polymyxins are potent antibiotics against multidrug-resistant microorganisms; however, clinical use remains restricted because of high risk of nephrotoxicity and limited understanding of toxicological mechanisms. To mitigate risks, structural analogs of polymyxins (NAB739 and NAB741) are currently in clinical development. Using a microphysiological system to model human kidney proximal tubule, we exposed cells to polymyxin B (PMB) and observed significant increases of injury signals, including kidney injury molecule-1 KIM-1and a panel of injury-associated miRNAs (each P < 0.001). Surprisingly, transcriptional profiling identified cholesterol biosynthesis as the primary cellular pathway induced by PMB (P = 1.22 ×10-16), and effluent cholesterol concentrations were significantly increased after exposure (P < 0.01). Additionally, we observed no upregulation of the nuclear factor (erythroid derived-2)-like 2 pathway, despite this being a common pathway upregulated in response to proximal tubule toxicants. In contrast with PMB exposure, minimal changes in gene expression, injury biomarkers, and cholesterol concentrations were observed in response to NAB739 and NAB741. Our findings demonstrate the preclinical safety of NAB739 and NAB741 and reveal cholesterol biosynthesis as a potentially novel pathway for PMB-induced injury. To our knowledge, this is the first demonstration of a human-on-chip platform used for simultaneous safety testing of new chemical entities and defining unique toxicological pathway responses of an FDA-approved molecule.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Rim/efeitos dos fármacos , Polimixinas/toxicidade , Animais , Antibacterianos/toxicidade , Biomarcadores , Desidrocolesteróis , Desmosterol , Modelos Animais de Doenças , Expressão Gênica , Heme Oxigenase-1 , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Lanosterol , Fator 2 Relacionado a NF-E2/metabolismo , Polimixina B/farmacologia , Polimixinas/farmacologia
9.
J Am Soc Nephrol ; 29(12): 2820-2833, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361326

RESUMO

BACKGROUND: The death of epithelial cells in the proximal tubules is thought to be the primary cause of AKI, but epithelial cells that survive kidney injury have a remarkable ability to proliferate. Because proximal tubular epithelial cells play a predominant role in kidney regeneration after damage, a potential approach to treat AKI is to discover regenerative therapeutics capable of stimulating proliferation of these cells. METHODS: We conducted a high-throughput phenotypic screen using 1902 biologically active compounds to identify new molecules that promote proliferation of primary human proximal tubular epithelial cells in vitro. RESULTS: The primary screen identified 129 compounds that stimulated tubular epithelial cell proliferation. A secondary screen against these compounds over a range of four doses confirmed that eight resulted in a significant increase in cell number and incorporation of the modified thymidine analog EdU (indicating actively proliferating cells), compared with control conditions. These eight compounds also stimulated tubular cell proliferation in vitro after damage induced by hypoxia, cadmium chloride, cyclosporin A, or polymyxin B. ID-8, an inhibitor of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), was the top candidate identified as having a robust proproliferative effect in two-dimensional culture models as well as a microphysiologic, three-dimensional cell culture system. Target engagement and genetic knockdown studies and RNA sequencing confirmed binding of ID-8 to DYRK1A and upregulation of cyclins and other cell cycle regulators, leading to epithelial cell proliferation. CONCLUSIONS: We have identified a potential first-in-class compound that stimulates human kidney tubular epithelial cell proliferation after acute damage in vitro.


Assuntos
Túbulos Renais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Injúria Renal Aguda/tratamento farmacológico , Técnicas de Cultura de Células/métodos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Ensaios de Triagem em Larga Escala , Humanos , Túbulos Renais/citologia , Túbulos Renais/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Medicina Regenerativa
10.
Sci Rep ; 8(1): 14882, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291268

RESUMO

The adoption of a new technology into basic research, and industrial and clinical settings requires rigorous testing to build confidence in the reproducibility, reliability, robustness, and relevance of these models. Tissue chips are promising new technology, they have the potential to serve as a valuable tool in biomedical research, as well as pharmaceutical development with regards to testing for efficacy and safety. The principal goals of this study were to validate a previously established proximal tubule tissue chip model in an independent laboratory and to extend its utility to testing of nephrotoxic compounds. Here, we evaluated critical endpoints from the tissue chip developer laboratory, focusing on biological relevance (long-term viability, baseline protein and gene expression, ammoniagenesis, and vitamin D metabolism), and toxicity biomarkers. Tissue chip experiments were conducted in parallel with traditional 2D culture conditions using two different renal proximal tubule epithelial cell sources. The results of these studies were then compared to the findings reported by the tissue chip developers. While the overall transferability of this advanced tissue chip platform was a success, the reproducibility with the original report was greatly dependent on the cell source. This study demonstrates critical importance of developing microphysiological platforms using renewable cell sources.


Assuntos
Técnicas de Cultura de Células/instrumentação , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Antibacterianos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenvolvimento de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Humanos , Túbulos Renais Proximais/metabolismo , Polimixina B/toxicidade , Transferência de Tecnologia , Vitamina D/metabolismo
11.
JCI Insight ; 2(22)2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202460

RESUMO

Environmental exposures pose a significant threat to human health. However, it is often difficult to study toxicological mechanisms in human subjects due to ethical concerns. Plant-derived aristolochic acids are among the most potent nephrotoxins and carcinogens discovered to date, yet the mechanism of bioactivation in humans remains poorly understood. Microphysiological systems (organs-on-chips) provide an approach to examining the complex, species-specific toxicological effects of pharmaceutical and environmental chemicals using human cells. We microfluidically linked a kidney-on-a-chip with a liver-on-a-chip to determine the mechanisms of bioactivation and transport of aristolochic acid I (AA-I), an established nephrotoxin and human carcinogen. We demonstrate that human hepatocyte-specific metabolism of AA-I substantially increases its cytotoxicity toward human kidney proximal tubular epithelial cells, including formation of aristolactam adducts and release of kidney injury biomarkers. Hepatic biotransformation of AA-I to a nephrotoxic metabolite involves nitroreduction, followed by sulfate conjugation. Here, we identify, in a human tissue-based system, that the sulfate conjugate of the hepatic NQO1-generated aristolactam product of AA-I (AL-I-NOSO3) is the nephrotoxic form of AA-I. This conjugate can be transported out of liver via MRP membrane transporters and then actively transported into kidney tissue via one or more organic anionic membrane transporters. This integrated microphysiological system provides an ex vivo approach for investigating organ-organ interactions, whereby the metabolism of a drug or other xenobiotic by one tissue may influence its toxicity toward another, and represents an experimental approach for studying chemical toxicity related to environmental and other toxic exposures.


Assuntos
Ácidos Aristolóquicos/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Biomarcadores , Biotransformação , Carcinógenos/toxicidade , Dicumarol/metabolismo , Células Epiteliais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rim/lesões , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Patologia Molecular/instrumentação , Patologia Molecular/métodos , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Xenobióticos
12.
Curr Opin Toxicol ; 4: 16-21, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29057384

RESUMO

The kidney is a primary organ for filtration of the blood and elimination of drugs and xenobiotics. These active reabsorptive and secretory processes can result in acute kidney injury as a result of these concentrative properties. Classic measures of acute kidney injury are hampered by their ability to accurately assess function before irreversible damage has occurred. This review will discuss efforts to refine the clinical utility of standard biomarkers as well as the development of novel biomarkers of nephrotoxicity.

13.
Curr Protoc Toxicol ; 73: 14.18.1-14.18.28, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28777442

RESUMO

The liver and the kidney are key toxicity target organs during drug development campaigns, as they typically carry the burden of drug transport and metabolism. Primary hepatocytes and proximal tubule epithelial cells grown in traditional in vitro 2-D culture systems do not maintain transporter and metabolic functions, thus limiting their utility for nonclinical toxicology investigations. We have developed a renal and hepatic microphysiological system (MPS) platform that uses a commercially available MPS device as the core cell culture platform for our methodologies. We describe protocols for isolating and propagating human proximal epithelial cells and how to seed and culture a renal MPS to recapitulate the human proximal tubule. We present two methods to culture hepatocytes within an MPS and the steps required to connect a renal MPS to a liver MPS. © 2017 by John Wiley & Sons, Inc.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes de Toxicidade , Técnicas de Cultura de Células , Humanos
14.
Narrat Inq Bioeth ; 7(1): 87-95, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713149

RESUMO

This case study considers the clinical ethics issues of medical appropriateness and quality of life for patients who are critically ill. The case involves a terminally ill cancer patient with a profoundly diminished quality of life and an extremely poor prognosis; his spouse desires to bring him home, where she will arrange to keep him alive for as long as possible via life-sustaining interventions. The analysis engages with the complicated notion of medical appropriateness, both in general and as it pertains to life-sustaining interventions in a critical care setting, and considers the ethical implications of the various ways in which one might understand this concept. It also addresses the significance of quality-of-life determinations, emphasizing the role of individualized values in determining the importance of quality of life for clinical decision-making. The discussion concludes with a description of the two strategies employed by the ethics team in helping to alleviate the medical team's concerns about this case.


Assuntos
Tomada de Decisão Clínica/ética , Cuidados Críticos/ética , Estado Terminal/terapia , Ética Médica , Cuidados para Prolongar a Vida/ética , Qualidade de Vida , Assistência Terminal/ética , Idoso , Humanos , Masculino , Prognóstico , Cônjuges
15.
Kidney Int ; 90(3): 627-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27521113

RESUMO

The kidney proximal tubule is the primary site in the nephron for excretion of waste products through a combination of active uptake and secretory processes and is also a primary target of drug-induced nephrotoxicity. Here, we describe the development and functional characterization of a 3-dimensional flow-directed human kidney proximal tubule microphysiological system. The system replicates the polarity of the proximal tubule, expresses appropriate marker proteins, exhibits biochemical and synthetic activities, as well as secretory and reabsorptive processes associated with proximal tubule function in vivo. This microphysiological system can serve as an ideal platform for ex vivo modeling of renal drug clearance and drug-induced nephrotoxicity. Additionally, this novel system can be used for preclinical screening of new chemical compounds prior to initiating human clinical trials.


Assuntos
Túbulos Renais Proximais/fisiologia , Modelos Biológicos , Eliminação Renal/fisiologia , Transporte Biológico Ativo , Técnicas de Cultura de Células , Sobrevivência Celular , Células Epiteliais/metabolismo , Humanos , Túbulos Renais Proximais/citologia
16.
J Am Soc Nephrol ; 27(4): 1015-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26260164

RESUMO

Nephrotoxicity due to drugs and environmental chemicals accounts for significant patient mortality and morbidity, but there is no high throughput in vitro method for predictive nephrotoxicity assessment. We show that primary human proximal tubular epithelial cells (HPTECs) possess characteristics of differentiated epithelial cells rendering them desirable to use in such in vitro systems. To identify a reliable biomarker of nephrotoxicity, we conducted multiplexed gene expression profiling of HPTECs after exposure to six different concentrations of nine human nephrotoxicants. Only overexpression of the gene encoding heme oxygenase-1 (HO-1) significantly correlated with increasing dose for six of the compounds, and significant HO-1 protein deregulation was confirmed with each of the nine nephrotoxicants. Translatability of HO-1 increase across species and platforms was demonstrated by computationally mining two large rat toxicogenomic databases for kidney tubular toxicity and by observing a significant increase in HO-1 after toxicity using an ex vivo three-dimensional microphysiologic system (kidney-on-a-chip). The predictive potential of HO-1 was tested using an additional panel of 39 mechanistically distinct nephrotoxic compounds. Although HO-1 performed better (area under the curve receiver-operator characteristic curve [AUC-ROC]=0.89) than traditional endpoints of cell viability (AUC-ROC for ATP=0.78; AUC-ROC for cell count=0.88), the combination of HO-1 and cell count further improved the predictive ability (AUC-ROC=0.92). We also developed and optimized a homogenous time-resolved fluorescence assay to allow high throughput quantitative screening of nephrotoxic compounds using HO-1 as a sensitive biomarker. This cell-based approach may facilitate rapid assessment of potential nephrotoxic therapeutics and environmental chemicals.


Assuntos
Heme Oxigenase-1/análise , Nefropatias/induzido quimicamente , Testes de Toxicidade , Biomarcadores/análise , Células Cultivadas , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Humanos , Nefropatias/enzimologia , Nefropatias/genética , Túbulos Renais Proximais/citologia , Testes de Toxicidade/métodos
17.
Bioethics ; 30(4): 244-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26308751

RESUMO

Moral distress is now being recognized as a frequent experience for many health care providers, and there's good evidence that it has a negative impact on the health care work environment. However, contemporary discussions of moral distress have several problems. First, they tend to rely on inadequate characterizations of moral distress. As a result, subsequent investigations regarding the frequency and consequences of moral distress often proceed without a clear understanding of the phenomenon being discussed, and thereby risk substantially misrepresenting the nature, frequency, and possible consequences of moral distress. These discussions also minimize the intrinsically harmful aspects of moral distress. This is a serious omission. Moral distress doesn't just have a negative impact on the health care work environment; it also directly harms the one who experiences it. In this paper, I claim that these problems can be addressed by first clarifying our understanding of moral distress, and then identifying what makes moral distress intrinsically harmful. I begin by identifying three common mistakes that characterizations of moral distress tend to make, and explaining why these mistakes are problematic. Next, I offer an account of moral distress that avoids these mistakes. Then, I defend the claim that moral distress is intrinsically harmful to the subject who experiences it. I conclude by explaining how acknowledging this aspect of moral distress should reshape our discussions about how best to deal with this phenomenon.


Assuntos
Pessoal de Saúde/psicologia , Princípios Morais , Alienação Social , Estresse Psicológico/etiologia , Local de Trabalho , Atitude do Pessoal de Saúde , Conflito Psicológico , Teoria Ética , Pessoal de Saúde/ética , Humanos , Alienação Social/psicologia , Inquéritos e Questionários , Local de Trabalho/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...